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The results of variational solutions of the repeated ring and self-consistent 
repeated ring equations for the two~ and three-dimensional overlapping Lorentz 
gas (LG), as formulated in a previous report, are presented. Calculations of the 
full velocity correlation function (VCF) for the 2D LG, including long-time 
tails, are compared with those from molecular dynamics. The trial functions 
chosen lead to predictions for the long-time tails that improve as the density of 
the scatterers is increased. At a value of 0.24 for p* (=pa 2, where p is the 
density and tr the radius of scatterers), the self-consistent amplitudes of the long- 
time tail are within 40% of the molecular dynamics. A limited number of 3D 
results for the short-time behavior of the repeated ring VCF are presented. The 
3D solutions agree with the molecular dynamics to within 10%. 

KEY WORDS:  Kinetic theory; random media; Lorentz model; self-consistent 
repeated ring theory; long-time tails. 

1. I N T R O D U C T I O N  

The Lorentz model has received considerable attention because it 
represents one of the simplest nontrivial models of particle transport 
through random media. The Lorentz model we consider (the overlapping 
Lorentz gas, LG) consists of a random array of fixed overlapping scatters 
of radius a, through which a tagged point particle travels. When the den- 
sity p* of the fixed scatters is low (p*= pcra~ 1, where d is the dimension 
of the system), the motion of the tagged particle is described by the 
Lorentz-Boltzmann equation. Here, tagged-particle-scatterer-correlations 
are ignored. As the density is increased, the correlations become important 
and a more sophisticated theory is required, the repeated ring (RR) 
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theory. (2) The repeated ring equations incorporate pair correlations and 
represent an improvement over the Boltzmann equation at moderate 
densities. Yet, as the tagged particle explores more and more of the matrix 
of scatterers, still higher order correlations develop. These higher order 
correlations play a prominent role as the density increases, and, indeed, 
lead to the vanishing of the particle's diffusion constant D at the 
percolation density p..(3) The repeated ring equations fail to predict the 
vanishing D, but a self-consistent theory, (1'4 7) incorporating these higher 
order correlations (rings inside of ring collisions(4)), does predict well the 
vanishing of D. 

The fundamental quantity reflecting all the important physics dis- 
cussed in the preceding paragraph is the velocity correlation function 
(VCF) p(t). At low densities or at short times, p(t)  decays exponentially 
due to the random uncorrelated collisions between the point particle and 
the scatterers. At intermediate times p(t)  drops below p , ( t )  (the Boltzmann 
prediction) due to pair correlations. In fact, p(t)  eventually becomes 
negative due to backscattering. This represents the RR regime. Finally, at 
longer times, for all densities, a self-consistent repeated ring (SCRR) theory 
is required. 

At long times, 
p(t)  ~ --ct't -#' -- a t -  (a+ 2)/2 

where f l ' > ( d + 2 ) / 2 .  Various theories attempt to describe the long-time 
behavior of p(t). (4-8'9). All agree that there exists a t (d+2)/2 decay for long 
times, but disagree on the amplitude ~. Several works discuss the 
preasymptotic ~'t -#' decay. Gotze, Leutheusser, and Yip (GLY) (6) and 
Masters and Keyes (MK) (4) find that, as p* is approached from below, the 
long-time tail sets in at increasingly longer times. At earlier times, the 
negative preasymptotic t -#' decay dominates. At p* =p*,  the t -t~' decay 
persists for all times. While GLY and MK agree on the qualitative 
behavior of the long-time decay, they disagree on the values of ~', fl', and a. 

The molecular dynamics (MD) results of Alder and Alley (~~ on the 
2D LG show that if p(t)  is fit to - ) , t  -~ for times between 15 and 50 mean 
collision times, then 6 ~ 2 -  2p*. It is believed that this reflects an average 
of the preasymptotic and asymptotic behavior of p(t). (6) The significant 
MD result is that a is much larger than predicted by any theory. 

Using a mode coupling theory, Ernst et al. (EMDB) (8) obtained values 
for a on the order of one-half the result from MD. However, their theory is 
not self-contained, requiring rather detailed information concerning the 
diffusion tensor. This can only be obtained from MD results. The SCRR 
theory represents an alternative theoretical approach to the determination 
of a. While MK were able to demonstrate that a becomes very large near 
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the percolation density, they did not present quantitative predictions on the 
long-time tail of the VCF. 

The purpose of this work is to calculate the VCF over a wide range of 
times and densities. We utilize an approach similar to that of MK. The 
approach we follow is discussed in detail in a previous report, (1) hereafter 
denoted as I [-equations from I will be indicated as Eq. (I.1), etc.]. We 
emphasize that the results presented herein are completely self-contained. 
We focus primarily on the long-time behavior of p(t). In Section 2 we 
briefly review the approach outlined in I. Section 3 contains results for the 
two- and three-dimensional Lorentz model. The final section contains a 
discussion of results and conclusions. 

2. OUTLINE OF THE THEORY 

We briefly outline the method utilized for the evaluation of the VCF. 
The method is fully developed in I. Following Masters and Keyes, who 
applied an integral version of a Cercignani variational principle (11) to the 
solution of the RR equations, a differential variational principle (12) was 
presented in I. Equations [Eqs. (I.35)-(I.36)] for the VCF p(t) of the 
tagged particle in the 2D Lorentz model were obtained. They are 

(z+vn)p(z)= 1 + (v1" I TI~-;I X(z)> 

= 1 + Stat j(2(2)) (I) 

where z is the Laplace transform variable, vB(=8vop*/3~r) is the 
Boltzmann prediction for the friction, and Vo is the tagged particle's 
constant speed. Stat J(X) denotes the stationary value of the variational 
functional J(Z), where 

and 

J(2 ~2~) = <2 ~z~" I kALo 12~2~>-2<2 (~" I k~I2  ~ I~('~> (2a) 

A c t  = z + v~ .~-~_ - pi(1, z) - T ~  ) (2b) 
o r  

Here /~ is the momentum-space reflection operator and the brackets are 
defined by 

1 
( f l  g) =~-~ f d61 dr12 W]Z2) fg (3) 

where r12 = rl - r z ,  and ,,ultz)12 is zero for I r l -  rzf < a and is unity otherwise. 
The formulas presented here and hereafter are appropriate to the 2D LG, 
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the formulas in I are appropriate to the 3D LG. In Eq. (2b), the z-depen- 
dent, BGK-like approximation to the Lorentz-Boltzmann operator is 
defined by 

p 2 ( l , z ) f ( v l ) = - v ( z ) I f ( v l ) - l f d 6 ' ~ f ( v ' ~ )  ] (4) 

where v(z) is the z-dependent friction. The motivation for using a z-depen- 
dent friction in Eq. (4) lies at the heart of a self-consistent kinetic theory 
(see Ref. 4 for details). The binary collision operators (13A4) are defined by 

T)~ )= O( ++_ljk) 6(ljk) I/jkl (/~jk- 1) (5a) 

and their adjoints 

T)ff ; = 6 ( / j ~ ) / j ~  { O( +/jk)/~j~ + O( -Y-/jk)} (5b) 

The parameter ljk represents the minimum distance between the surfaces of 
molecules j and k, ijk is the time rate of change of ljk, O(x) and 6(x) are the 
Heaviside and delta functions, respectively, and the operator/~jk acts on the 
momenta, changing pre- (post-) hit momenta to post- (pre-) hit momenta. 

The calculation of p(z) proceeds by choosing a variational function 2, 
which is to mimic the tagged-particle-scatterer pair correlations. In I we 
argued that a suitable 2 is 

2(r12, v, z) ---- 2N(r12, V, Z) q- 2K(r12, u Z) (6) 

where XK is a completely determined function related to the kinetic 
boundary layer 

Z~ ) = - (2p(z)/v~) exp{ - [v(z) + z] Ir - rol/Vo} fo" v~ f0s (7a) 

and ZN, the normal solution, (~5) is given by 

~ ) =  1 - v ( z ) - l v l " ~  l~l(r,z) (7b) 

Here 1VI is a function of r12 and z to be determined from the variational 
principle. The kinetic term in Eq. (7a) describes the distribution of particles 
that have recently undergone a collision at r12 =r0  with scatterer 2 but 
have yet to undergo another collision in the fixed fluid. In Eq. (7a), the 
cone function 12(61) is unity if --/31 is directed at the scatterer and is zero 
otherwise. The normal term 2N describes the distant hydrodynamic-like 
correlations in the tagged-particle-scatterer system. 
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Inserting Eq. (6a) into the variational function, we obtain 

Stat J(X) = v(z) p(z){ [M; S'] - [S'; S'] } (8) 

where the square bracket is 

f dr W~2)A(r) �9 B(r) (9) EA; B] 

1 I d~ z~2)(~, r, z) (10) S'(r, z)= - ~  

and M(r, z) is required to be 

v2(z) 
M(r, z ) =  - ~zv-----~ J dr' G(r, r ' [  co)S'(r', z) (11) 

Here the Green's function is defined as the solution of the diffusion 
equation 

(-co2 +V2) G(r, r' [ co)= - 2 7 : 6 ( r -  r') (12) 

where co2=2zv(z)/vg. Following standard procedures, (16) G is explicitly 
evaluated as 

H (r r 
G(r, r' I co)= --[m]~'--"~>/-" 

. . . .  [•{,2 - -  0{Im{•{,1 ] 

x EHltmll(cor<)+~lmIHl2~(cor<)] e 'm(~ #) (13) 

where ~b and ~b' are the polar angles of r and r', respectively. Here 

j; = ~1, R e c o < 0  (14) 
(2, Re co > 0 

H~)(x) Im(X), (2) = H m ( x ) = - K m ( x ) ,  Im and K m a r e  the modified Bessel 
functions of the first and second kinds, respectively, 6.,p represents the 
Kronecker delta, and 

H(,!_ l(coa) r r ( l !  1((..0(7 ) iml + /~lml + 
~ "  = HlZm] 1(co(7)+ Hl2m] + 1(co~) (15) 

Thus, from the variational principle, we have determined the unknown 

822/51/1-2-19 
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function M(r,  z). Inserting the explicit form of the Green's function into 
Eq. (11), we get 

v2(z) p(z) 
M(r, z ) =  

v 3 6 , , 2 -  ~ , 1  

;o~ x dr' r'g~*)(cor> ) [H]*)(cor < ) + ~lg~2)(~or< )] S'(r', z) (16) 

which, with Eqs. (6) and (7), completely specifies Z. 
The desired result is obtained by inserting the above forms for M(r, z) 

into Eq. (8) and utilizing Eq. (1), 

I)*(Z) p:g ] 1 
vBp(z): Z*+I+  4V------'~([~,~](z)+V*(Z)2[Tt, g](z) ) (17) 

where the reduced quantities, denoted with a superscript star, 
z * =  z/va, v * =  W/Vo, and p * =  pa 2. The reduced brackets are 

are 

[g, g](~) = 2re ; ]  dy y-3s(y-1, z) s(y -1, Z) (18a) 

_ 4~ {f~ dy y 3s(y_l,z)[H],)(_~_ ) [Tt, g](z) 6,,2 - cq 6,,~ 

(7)]; <) + ~1/-/? ) ay' y'-3sIy'-~, z)/4~*) 7 

+ f ; d y y  3sCy-l,z) H~+)(~) f jdy ' y '  3sCy ' - ' , z )  

051(7 (DO" x[H'l)(-fi;-)+cqH~E'(-fi;-)]} (18b) 

wnere 

4 ~Om(X) 
S(X,Z)=-~j ~ d~exp{-[v*(z)+v~z*]d(x,(~)}a(x, qk)b(x,~) (19a) 

~b m = arcos[(1  - x -Z)  1/2] (19b) 

a(x ,  ~ ) =  [-1 - - x - 2 ( l  --].~2)31/2 : ?? 0 .~t 1 (19C) 

b(x, f/)) = a(x, d b) # + {(1 - #2)1-1 - a2(x, ~b)] }i/2 = t~o. f (19d) 

d(x, ~b) = { [1 - aZ(x, ~b)]/(1 - #2)} 1/2 = Ir =- r ol/R (19e) 

# = cos ~ (19f) 
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This completes the outline of the specific variational solution to the 
RR VCF. When the parameter v*(z) in Eqs. (17)-(19) is set equal to vR*, 
we obtain an approximate RR VCF PRR(Z). However, if we set 
p(z) = [z + v(z)] 1, where v(z) is the solution of the implicit equation 

v*(z) p*v*(z) 
- 1 + - -  [[~, ~]~)+ v(z)*2[~, ~ ] ~ ]  (20) 

vr ~vr 

we obtain a self-consistent form for the VCF Psc(Z). Equation (20) can be 
solved by iteration, and the remaining expressions for PRR(Z) and Psc(Z) 
numerically inverse-Laplace-transformed. 

3. NUMERICAL RESULTS 

3.1. T w o - D i m e n s i o n a l  Lorentz Gas 

We first discuss the numerical results for the two-dimensional Lorentz 
gas. In Fig. 1 we present the calculation of the diffusion constants, both 
DRR and Dsc, from I and compare with the molecular dynamics of 
Bruin (17/and Alder and Alley. (1~ The diffusion constants are obtained from 
the z = 0 friction constants through the relation D = vg/2v(z = 0). In I we 
point out that the choice of trial function is most accurate at high and low 

0.8 

~ B 0.6 

0.4' ~ + 

11.2 

0 011 0.3 012 
111 

P 

Fig. 1. Density dependence of the diffusion constant in two dimensions. (+ )  The MD of 
Bruin, (x) the MD of Alder and Alley; upper curve, the RR calculation; lower curve, the 

SCRR results. 
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densities. This observation is reflected in Fig. 1, where the maximum dis- 
agreement falls at intermediate densities in the neighborhood of p* =0.16. 
The difference between DRR and Dsc is largely due to a difference in the 
long-time behavior of PRR(t) versus Psc(t). We can expect that Fig. 1 will 
be an indicator of the success of our variational solution in predicting the 
VCF, in particular the long-time behavior. We should expect the least 
success at densities around p*,,~0.16 and improved success at higher 
densities. 

Figure 2 presents PRR(t) for times from t = 0 to t =  7.5 (measured in 
mean collision times). We observe that as p* is increased, the initial 
behavior ( t<3)  of PRR(t) changes little, while the amplitudes of the 
negative portion of PRR(t), (t > 3), grow. However, the RR approximation 
underestimates the magnitude of the negative part of p(t) and therefore 
predicts a diffusion constant which is too large. The dashed line in Fig. 2 
represents the SC VCF at p* =0.24. Already at seven collision times we 
observe a difference between the RR and the SCRR approximations. We 
suspect that this difference results from initial configurations which lead to 
a large number of tagged-particle-scatterer collisions within the first few 
mean collision times. Of course, this disagreement PRR(t) and Psc(t) 
persists for longer times as well. 

tO 

~  ~ 
r .05 

0.6 

0.2 

-0.2 

O3 

s (=t/T ~) 

Fig. 2. The RR VCF for four densities. Time is measured in mean collision times. The 
dashed curve represents the SCRR VCF for p*=0 .24 .  The numbers  refer to the reduced 

density. 
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Fig. 3. The deviation of PRR(t) from pB(t) (xl02) for the 2D LG at three densities, compared 
with the MD of Bruin. (x) The MD results for p* =0.005, (O)  the MD for p* =0.01, ( + )  

MD for p* =0.02. 
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Fig. 4. The long-time behavior of (x) the RR and ( + )  SCR VCF for the 2D LG at 
p* =0.05. Also presented are the asymptotic predictions of (--)  MD and (-) RR and SCRR 

theories. 
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Fig. 5. Similar to Fig. 4, except for p* = 0.1. 

For times less than approximately three collision times, we expect the 
RR theory to be sufficient. Figure 3 presents the short-time calculations of 
the VCF and compares with the MD results of Bruin. The RR theory 
appears qualitatively correct. At the highest density presented, p * =  0.02, 
the RR theory incorporates approximately 80% of the difference between 
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Fig. 6. Similar to Fig. 4, except for p* = 0.16. 
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Fig. 7. Similar to Fig. 4, except for p*=0.24. 

p(t) and pB(t), the Boltzmann prediction. Below we discuss the three- 
dimensional analogue of Fig. 3 and observe a much improved prediction of 
the RR theory. 

Figures 4-7 present the predicted long-time tails from both RR and 
SCRR calculations for densities ranging from 0.05 to 0.24. The results are 
compared with the asymptotic form of p(t) from the MD of Alder and 
Alley. When viewing the long-time tail results, one should keep in mind the 
error in the density-dependent diffusion constant. We expect the difference 
between the amplitudes of the tails of the SC and RR calculations to grow 
with increasing densities. Further, we expect the SC result to improve with 
increasing densities above p * ~  0.16. These trends are observed in Fig. 4-7. 
In fact, there exists a dramatic improvement in the prediction for p* = 0.24 

Table I. Comparison of the Amplitudes of Long-Time Tails 
for 2D LG Obtained from MD (a iD),  (10) Approx imate  MC (O ic ) ,  (8"9) 

Repeated Ring (ORB), and Self-Consistent Repeated Ring (asc) 

/9 '~ ~MD ~MC ~RR O~SC 

0.05 0.06 0.03 0.019 0.019 
0.10 0.25 0.12 0.042 0.059 
0.16 0.62 0.33 0.085 0.169 
0.24 1.30 1.33 0.163 0.733 
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when compared with the p* = 0.16 results (where the largest error is expec- 
ted). It is unfortunate that p * =  0.24 is the largest density for which MD 
results are available. 

Table I summarizes the predictions for the amplitudes of the long-time 
tail. The mode coupling predictions quoted in Table I represent an 
approximate result obtained from Eq. (4.5) of Ref. 9. The values of a from 
the SC theory are poor, except for the highest density reported. Here, the 
SC theory predicts an amplitude within 40% of the MD of Alder and 
Alley. 

3.2. The  T h r e e - D i m e n s i o n a l  Lorentz  Gas 

We limit the presentation of the three-dimensional results to the 
situations studied by Bruin. (~7) Figure 8 compares the RR and SCRR 
values of D with Bruin's MD results. We observe that Dsc is in close 
agreement with the MD over the full density range studied by Bruin. 
Therefore, we expect the 3D calculations to be more accurate than the 2D 
calculations of p(t). This expectation is substantiated by Figs. 9 and 10, 
wher PRR(t) for short times is presented along with MD. The calculations 
are seen to be extremely accurate not only for p* =0.05, but also for 
p*=0.20,  where the RR theory accounts for 90% of the deviation from 
pB(t). 

Fig. 8. 
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o o12 0.4 

2* 
Density dependence of the diffusion constant for the 3D LG. ( + ) The MD of Bruin; 

upper curve, the RR prediction; lower curve, the SCRR prediction. 
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Fig. 10. Similar to Fig. 9, except for p* = 0.02. 
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4. DISCUSSION AND CONCLUSIONS 

The trial function utilized in this work was chosen because of its suc- 
cess in reproducing accurate results on the diffusion constant (see Ref. 1) 
for the Lorentz gas. The diffusion constant calculation utilizing this trial 
function improved as the density increased. It is apparent  that the trial 
function chosen leads to improved results at high densities for the VCF as 
well. 

It is unfortunate that the 3D M D  results are limited, because the 
3 D L G  is simpler to handle theoretically. We believe that the 3D 
calculations are more accurate than the 2D work and take as evidence 
Fig. 1 and 3 versus Figs. 8-10. We speculate in I that the superiority of the 
3D work rests in the fact that the collision operator is of a B G K  form, 
whereas for the 2D LG this represents an approximation. The B G K  
assumption (i.e., isotropic scattering cross section) will change not only the 
nature, but also the extent of the kinetic boundary layer ~18) and hence affect 
X. Therefore, it would be worthwhile to drop the B G K  assumption for the 
2D LG and seek an improved solution. 

The numerical results here and in I are encouraging and we remain 
optimistic concerning the approach. The variational method allows for 
improvement  through better trial functions. Furthermore, there is now 
evidence that a self-consistent kinetic theory set up within the framework of 
the RR equations represents a suitable approach toward predicting non- 
equilibrium processes in condensed phases. 
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